skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gutarra, Susana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The “second wave” of Ediacaran evolution (∼558–548 Ma) was characterized by the appearance of macroscopic organisms in shallow marine settings, where they formed communities with high morphological and ecological diversity, including new and more complex modes of life. Based on analogy with modern marine ecosystems, these early shallow water communities could have substantially modified local hydrodynamic conditions and influenced resource availability, but we know very little about how they interacted with their fluid environment at larger spatial scales. Here, we use computational fluid dynamics to investigate the hydrodynamics of different shallow marine Ediacaran communities based on fossil surfaces from Russia and South Australia. Our results reveal considerable hydrodynamic variability among these communities, ranging from unobstructed flow, to enhanced mixing, to very low in-canopy flow. This variability represents a noticeable shift from the more conserved hydrodynamic conditions reconstructed for older Ediacaran communities from deep water settings. The variation in how shallow marine Ediacaran communities affected local hydrodynamics could have given rise to notable differences in the distribution of crucial water-borne resources such as organic carbon and oxygen. We therefore hypothesize that increasing variability in community hydrodynamics was an important source of habitat heterogeneity during the late Ediacaran. On long timescales, this heterogeneity may have helped sculpt ecological opportunity, fostering the radiation of animals. 
    more » « less
  2. The rise of animals across the Ediacaran–Cambrian transition marked a step-change in the history of life, from a microbially dominated world to the complex macroscopic biosphere we see today.1,2,3 While the importance of bioturbation and swimming in altering the structure and function of Earth systems is well established,4,5,6 the influence of epifaunal animals on the hydrodynamics of marine environments is not well understood. Of particular interest are the oldest “marine animal forests,”7 which comprise a diversity of sessile soft-bodied organisms dominated by the fractally branching rangeomorphs.8,9 Typified by fossil assemblages from the Ediacaran of Mistaken Point, Newfoundland,8,10,11 these ancient communities might have played a pivotal role in structuring marine environments, similar to modern ecosystems,7,12,13 but our understanding of how they impacted fluid flow in the water column is limited. Here, we use ecological modeling and computational flow simulations to explore how Ediacaran marine animal forests influenced their surrounding environment. Our results reveal how organism morphology and community structure and composition combined to impact vertical mixing of the surrounding water. We find that Mistaken Point communities were capable of generating high-mixing conditions, thereby likely promoting gas and nutrient transport within the “canopy.” This mixing could have served to enhance local-scale oxygen concentrations and redistribute resources like dissolved organic carbon. Our work suggests that Ediacaran marine animal forests may have contributed to the ventilation of the oceans over 560 million years ago, well before the Cambrian explosion of animals. 
    more » « less
  3. The stem-group euarthropodAnomalocaris canadensisis one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability ofA. canadensisto use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining three-dimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse anA. canadensisfeeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest thatA. canadensiswas an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle ofA. canadensisand that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels. 
    more » « less
  4. Pteridinium simplex is an iconic erniettomorph taxon best known from late Ediacaran successions in South Australia, Russia, and Namibia. Despite nearly 100 years of study, there remain fundamental questions surrounding the paleobiology and paleoecology of this organism, including its life position relative to the sediment–water interface, and how it fed and functioned within benthic communities. Here, we combine a redescription of specimens housed at the Senckenberg Forschungsinstitut und Naturmuseum Frankfurt with field observations of fossiliferous surfaces, to constrain the life habit of Pteridinium and gain insights into the character of benthic ecosystems shortly before the beginning of the Cambrian. We present paleontological and sedimentological evidence suggesting that Pteridinium was semi-infaunal and lived gregariously in aggregated communities, preferentially adopting an orientation with the long axis perpendicular to the prevailing current direction. Using computational fluid dynamics simulations, we demonstrate that this life habit could plausibly have led to suspended food particles settling within the organism's central cavity. This supports interpretation of Pteridinium as a macroscopic suspension feeder that functioned similarly to the coeval erniettomorph Ernietta, emblematic of a broader paleoecological shift toward benthic suspension-feeding strategies over the course of the latest Ediacaran. Finally, we discuss how this new reconstruction of Pteridinium provides information concerning its potential relationships with extant animal groups and state a case for reconstructing Pteridinium as a colonial metazoan. 
    more » « less